

Table of Contents
Lean Apps 2

Summary 3
Progress in Application Design 3

Look to the Future 7
The Elements of a Lean App 7
Example: Acme Bank 13
Adoption Concerns 16
Are Lean Apps a New Idea? 18

The Lean App Movement 18
The Lean App Goal: Flipping the IT Iceberg 18
A Lean App Manifesto 19

Getting Started 21
APIs 22
Data Storage 22
Application Design 22

Final Thoughts 22

About the Author 23

Lean Apps
Build software based on customer value, rather than
technological ownership

Summary
● Traditional applications, overweight “DIY”, and implementation scope creates a false

sense of control and change isolation; by contrast, lean apps focus on shifting as
much undifferentiated work (server management, data sharing) as possible to
platform providers who can deliver it more consistently and cost effectively using
cloud-native, multi-tenanted SaaS implementations.

● Lean apps decrease development time and delivery risk by reducing application
surface area to four key elements: data model, integrity constraints, stateful workflows,
and connectors.

● In a lean app, much of the “heavy lifting” shifts to the platform vendor: data
consistency and cross-cloud replication; security and governance; fault tolerance
and scaling; infrastructure procurement, deployment, and management; data
modeling and API maintenance.

● Developer and ownership benefits include: more secure and predictable outcomes;
automatic cross-cloud, cross-company, and cross-region data sharing; guaranteed
consistency of data, modern APIs that are cloud-, web-, and mobile-ready, and data
model evolution guaranteed not to break clients.

● Companies can adopt lean app methodologies incrementally, and vendors such as
Vendia and Snowflake have embraced this model in their offerings already,
simplifying migration and adoption.

Progress in Application Design
Software has progressed over time to remove drudgery and toil from the developer by
abstracting the level of expression – like assembly language to C to C++ to Java to Python as
a programming language example. But it is not just the language used to write applications:
The shift from highly proprietary libraries with complex licensing schemes to shared, open
source libraries has had a similarly dramatic impact on the speed and efficiency of
developing software and delivering IT solutions.
With the move to the cloud, not only did the job of running a data center disappear – the
“serverless” moniker is now appearing in virtually every category of service from AWS,
another way in which vendors are trying to remove the undifferentiated work of deploying,

scaling, securing, and managing servers and other infrastructure from the job of
developing and delivering software implementations.

Watching this grand evolution over the years raises interesting questions:
● Where are today’s trendlines - increasing automation, abstraction, standardization

(de facto as well as de jure), and “serverlessness” - headed?
● What can they tell us about what a typical business software application will look like

in the future?
● Most importantly, what can developers, cloud companies, and the broader IT

ecosystem do to achieve those future outcomes faster?

While tracking an entire industry is complex, there is a single, prevailing theme to all of
these changes: “less is more”. Broadly speaking, progress in application design has been
driven by reducing surface area and shifting complexity to the application’s
environment.

Figure 1: How complexity has shifted out of applications over time through surface area
reduction.

Reduction in surface area occurs in various ways:

1. Removal. The most powerful “reduction” of all is when an entire area is permanently
removed from a developer’s purview. The shift from on-prem data centers to the
public cloud is a great example of removal. Wholesale problems that used to
consume precious IT resources (“Which router should we use?” “What’s our network
backplane bandwidth between data centers?” “How much rack space do we have left
on the west coast?”) have vanished … or at least have been condensed into paying a
public cloud provider’s margins, which are usually covered by the shift from buying
peak capacity to paying for actual use.

2. Reduction through standardization. When things cannot be taken away entirely
from the application stack, the next best thing is to focus a company’s (and
developer’s) resources on the elements that differentiate their customer outcomes,
rather than the undifferentiated “commodity” pieces. Open source libraries, the
standardization of operating systems and languages, Docker images … all of these
are examples where the community has worked hard to avoid spurious differences
that consume precious resources, allowing practitioners to focus on what matters.
(Note that “standardization” here doesn’t have to mean a formal, committee or
standards body-driven process; it can also take the form of upvoting open source
libraries to create a de facto notion of the ‘right’ way to handle a common task, such
as parsing a URL in python.)

3. Paradigm shifts that simplify complex tasks. In the purest form of the above
methods, the programming model does not change outright. Rather, tasks like
“provisioning a server” or “using a URL parser” still occur, but with less underlying
effort (public cloud versus private data center, standard library versus selecting a
vendor to negotiate and purchase a custom license). Other times, however, the
reduction in surface area requires a corresponding change in how an application
itself is constructed.

This class tends to lead to “epochs” of software development: Like the shift from
mainframes to client/server, which eventually created the server-based Unix era,
which itself led to the public cloud (initially focused on Infrastructure-as-a-Service),
which ultimately gave rise to fully managed and “serverless” offerings. Each of these
created powerful new opportunities for application developers, but these large
shifts could be achieved only with a compatible modification in how the software itself

was developed, organized, and/or deployed. Every paradigm shift also relied on the
ones that came before. For example, AWS Lambda was only possible because fully
managed storage solutions (such as Amazon S3 and Amazon DynamoDB) had
become available, which in turn were only possible because the public cloud (IaaS
style) had already been developed.

4. Automation. “GitOps”, along with commercial vendors like Netlify, and a host of
SaaS-style deployment tools have radically changed how most developers approach
committing, testing, and deploying code. Twenty years ago, new software projects
often started by creating (and staffing) custom tools to perform these functions;
now, they are standard, usually SaaS-based, mechanisms, with virtually no thought
given to how they actually work, as more of the routine elements are shifted from
application developers onto vendors.
(Since it’s orthogonal to the other changes, deployment automation and
development tools are not captured in Figure 1.)

Look to the Future
So much for looking in the rearview mirror – what does all this say about the future of
software development? If the major trends have been focused on the continual removal of
surface area,and the resulting decrease in complexity and cost of ownership, what is the
eventual result?

If one imagines these trends continuing, it is also natural to ask an interesting question:
What else can be taken out? What undifferentiated heavy lifting can be eliminated, leaving
only the truest, most pure form of what is often referred to as “business logic”?

In other words, what does a fully lean app look like?

For an industry that has for so long defined “software” as “stuff that runs on a machine”, it
can be difficult to give up on that paradigm. One approach is to focus on customer value,
by asking, “What are the parts of an application that actually create end user value?”

For instance, when a developer patches an operating system image, the end users
(customers) do not care. At best, it protects them from some future security or operational
event, but it is not something they can directly perceive.They especially do not care who does
it – the infrastructure provider, a third party, the company’s own developers, etc. In other
words, an activity like updating an operating system image is utterly undifferentiated. A
developer patching the OS on a server is not likely to help their company outcompete the
competition or enter a new market (unless that company happens to be a cloud provider,
operating system producer, or server vendor themselves).

So what is the actual beating heart of a typical application, the part that a company cannot
actually forgo? One often hears the term “business logic” tossed around, but what does
that actually mean?

The Elements of a Lean App
By letting go of how an application is constructed today and instead thinking about it
structurally, there are several elements that embody the actual business needs of a typical
application (Figure 2):

● A data model. Most commercial applications are, at their heart, “CRUD” in nature –
whether buying toilet paper on Amazon, filling out an insurance claim form, or

paying a bill online, much of software is ultimately about reflecting real-world
changes with a durable replica (aka “database update”) of those facts, and that
requires knowing what kind of data a business needs to model in the first place.

● Integrity constraints. Once the “syntax” of a data model is known, the next question
is usually establishing the “semantics”, most notably what kind of data is good
versus bad data. For example, most US banks will not allow a customer to withdraw
more money than they have in your checking account. Thus, in a banking
application, attempting a withdrawal would usually start with the software
equivalent of asking, “Is the current balance greater than or equal to the withdrawal
amount?”

If not, the withdrawal is not valid. Note, that this does not say how integrity
constraints are expressed – they could be data- or logic-centric expressions (balance
>= $0.00) or require Turing-complete code to calculate, possibly relying on existing
data in the data model to determine the answer.

Like the data model itself, integrity constraints are pure business logic. Advances in
telepathic AI aside, there is no way for a vendor or piece of infrastructure to know
what it means for data to be “right” for any given business (though choices in how
the data model is expressed – the schema – might make the expression of integrity
constraints easier or more difficult).

● State transitions (aka data triggers). What do Oracle PL/SQL routines, AWS Lambda
functions triggered by an Amazon S3 file upload, cron jobs, and Microsoft Azure
LogicApps have in common? They’re all workflows.
They are ways of managing transitions from one application state to another,
whether that transition is time based (“run a cron job at midnight”, “retrieve the
tweets on a specific subject from the last hour”) or data centric (“when the balance
of a checking accounts exceeds $1M, transfer the excess to a savings account”).
State transitions might employ integrity constraints, particularly if they create new
or modify existing data items, but they are fundamentally machine-initiated and
managed, rather than representing end user input or output.

Business workflow modeling is one of the key reasons that software, and thus
applications, need to be stateful and Turing-complete, because they cannot be
reduced to stateless or trivial pattern representations in most cases.

● Connectors. Connectors are the ligaments that enable an app to connect to other
applications. Connectors have two conceptual elements, though they may be
combined in practice:

○ Data transformations. These modulate differences between the app’s data
model and one or more “foreign” data models.

○ Event hubs. Other applications that lack proper eventing, scaling, or buffering
mechanisms may require not only data transformation but also control
integration, ranging from polling (for ingress) to queuing and throttling
updates (for egress).

It is tempting to think of connectors as “impure”, often their role will be to make up
for shortcomings in legacy applications or systems that exist outside the lean app
regime. But even in a perfect world of only lean apps communicating with other lean
apps, the need to build and deploy independently (“microservices” versus
“monoliths”) means that they will need to be loosely coupled, rather than tightly
bound to everything. Thus, connectors have an important long-term role to play in
modulating inter-application schema and workflow evolution, as well as their
short-to-medium term role in assisting with the initial migration from a legacy app to
a lean app and its integration with other legacy systems not yet ready for
modernization.

Figure 2: The elements of a lean app.

The list above is short. At first blush it might seem too short.

Compared to a “typical” application, such as a Kubernetes-based app, it’s perhaps 1-3% of
the total amount of software (and deployment/operational) infrastructure normally
thought of as an application. And just looking at the list above, even with an eye toward
public cloud infrastructure, one would be forgiven for reacting with, “But wait…there’s so
much more!” And that’s certainly true today: There is a critical gap
between the list above – true business logic – and the application
services developers are using today. To make a lean app possible, the
infrastructure has to start doing more for application developers. In
particular, it needs to do all of the following, automatically and without
impacting developers or operators (Figure 3).

Lean apps should be:

● Schema-based. Where it makes sense, data models (and their
evolution) and integrity constraints should be expressed in the
form of a standards-based schema, rather than written into
application code or deployment instructions.
Another way to say this is that “leanness” also extends to preferring data-centric
expressions (BALANCE >= 0) over code (if balance - withdrawal_amount <

0 then throw Exception(withdrawal_amount). This is to ensure that the
expression itself is lean – the less there is to read and write, the less there is to get
wrong or have to carefully maintain over time – and to allow for automation over
manual effort by shifting constraint enforcement from handwritten code to the
platform.

● Automated API generation. Let’s face it: Part of what makes
existing apps “plump” as opposed to “lean” is actually developer hubris,
including an over-reliance on customization and a sense that
hand-written code somehow “protects” the application from vendor drift,
future requirements, etc. These belief systems fade over time – for
example, most developers today could not even imagine writing in
assembly language and performing manual machine register allocation,
even though those tasks were once commonplace skills.

Today, API design is often viewed as IP, when in fact many applications
do not need a highly customized API so much as they need a clear, easily

scaled and secured API that works well and evolves safely.

Automatically generated APIs are not just faster, though - automating data-driven
APIs enables the infrastructure to also turn them from “dumb pipes” into “smart,
ACID systems” that ensure that the data they transport, even when it spans different
companies, can be kept consistent and up to date at all times.

● Automated schema and API migration. Business needs are not static, and
therefore application data models can not be “one and done”, either. So while lean
apps strive for minimalism in their design, they do need to embrace the reality of a
business’s long-term ownership needs, which includes ever-evolving customer,
market, and internal demands on the software.

If every such change required rewiring the fundamental structure of the application,
it would fail to be lean. (In other words, “leanness” is not just about what is not
present on any given day, but also about minimizing effort over the entire lifecycle of
an application.) And these updates need to affect APIs in a controlled fashion as well,
so that both “frontend” and “backend” developers aren’t constantly in the
(undifferentiated) business of inventing, applying, securing, and deploying
incremental API enhancements.

● Data decentralization and distribution. One of the ironies of the public cloud is
that many of the most business-critical needs are the hardest to develop for.
Building an application that can operate resiliently and safely across multiple
regions (with different accounts in each region as a best practice) while also
seamlessly ensuring that data shared with business partners is always correct,
complete, and up to date is one of the hardest challenges in software systems
today.
Only the most elaborate financial systems and a few mega tech companies can also
do cross-cloud support and have the ability to resiliently remain available when a
major cloud provider goes down. To succeed teams must shift the complexity of
maintaining ACID transactions into the infrastructure, leaving the application
developer with the simpler problem of deciding what data updates have to happen
as a single transaction versus separately (since that grouping is an element of the
application’s semantics, and can’t be guessed by the infrastructure).

Everything else - cost-optimized cross-cloud data transport, data integrity and
security, high-speed replication with ACID properties, etc. - should be handled by the
infrastructure.

● Built-in access controls and privacy protection. If a company needs
to “roll their own” access controls in order to share data with
partners, other departments, or different applications, then their
infrastructure is not working hard enough. These elements should
be part and parcel of the data modeling services provided by the
application platform.

● Ledgering and versioning data. The data model should implicitly
support versioning and ledgering of data, rendering the need to
manually maintain logs, backups, or audit controls unnecessary.

● Cross-cloud. Applications, and application developers, can not
afford to pretend that other clouds do not exist. Business partners, mergers and
acquisitions, and other routine events limit even the most “all in” company from
ignoring other cloud vendors apart from their preferred choice.
And increasingly, picking the best-of-breed cloud services means reaching across
providers to select different aspects. Doing that inevitably requires an application
infrastructure that offers cross-cloud data and code capabilities as an intrinsic feature.
This stands in sharp contrast to the Kubernetes, “port it to every cloud and run it
yourself there” approach, which is costly in terms of time, people, and infrastructure
spend, and still results in monocloud silos that are tough to interoperate.

● Scalable, pay-per-request, SaaS-style infrastructure. Whether one calls it
“serverless”, “fully managed”, “PaaS”, or something else, application infrastructure
needs to be as easy to consume, scale, and operate as adding another user to a
Slack account. The days of an already overburdened application team being willing
to deploy, scale, monitor, and maintain another company’s software are gone
forever, and the expectation is clearly that infrastructure should be “adult”, as in, not
require babysitting to scale, secure, maintain, or otherwise keep it running as
intended.

Figure 3: Key capabilities of a lean app that are provided by the platform.

Example: Acme Bank
Imagine a simple example based on Acme Bank, which has been a commercial bank in the
past but now wants to get into retail banking as well and needs an application to model its
new retail banking needs, such as ATM and teller-based deposits and withdrawals for end
user checking accounts. The discussion below ignores some obvious business details (like
savings versus checking accounts) to keep things simple.

Start by expressing a very basic data model:

● User_Account(customer:string, balance:number)

There also needs to be a way to express which cloud providers, regions, and parties need
to share the data modeled above. Say that Acme itself wants to operate in two regions,
both on AWS, to satisfy regulations that require fault tolerance in the event of a
region-wide outage, but also needs to share data with a regulator who operates in the
Azure cloud:

● Acme_East_Region(cloud:AWS, region:us-east-1)
● Acme_West_Region(cloud:AWS, region:us-west-2)
● FINRA(cloud:Azure, region:eastern_us)

Access controls are fairly simple: Acme can read and write balances from either region, but
FINRA can only read balances, since it’s just there to ensure compliance with banking laws.

Then invent some notation:
● User_Account(read:{Acme_East, Acme_West, FINRA}, write:{Acme_East, Acme_West})

Note: In a more elaborate example, these settings might need to vary on a per-item basis based
on the actual data; here, they are expressed at a per-node level as part of the overall data
schema as partner-level data sharing rules that don’t vary from account to account.

Then add some simple integrity constraints:
● User_Account.balance >= 0
● User_Account.name IS UNIQUE

Because Acme has other systems that need to know about account updates – including
legacy systems that run on a mainframe – create a simple event hook to notify them of
changes our app has processed:

● EventHub.webhook(<mainframe’s API URL>1)

1 If this isn’t a public API, it might require adding a fourth node to enable event delivery through a
VPC/VPN integration back into Acme’s on-prem mainframe or other legacy data center systems.

Figure 4: How a lean app for a retail banking solution might look.

From here, infrastructure can supply everything else that i’s needed by the application:
● Cross-cloud replication of all financial accounts, deposits, and withdrawals.
● Mobile- and web-ready GraphQL APIs generated from the data model that can be

connected to end user experiences without further implementation work.
● User transactions (“ACID” reads and writes) that enable complex financial

transactions to be grouped together without race conditions.
● Versioning, lineage, and logging of all updates, including “audit-ready” capabilities

that allow a third party auditor to be attached to the system in a read-only manner.
● Infrastructure deployment, scaling, monitoring, and managing of the entire banking

application.
● Full security apparatus, from on-the-wire and at-rest data encryption to PCI and

SOC2-compliant access controls and governance mechanisms that is compliant out
of the box.

● Machine, network, cloud provider, and geographic fault tolerance to meet
demanding financial service industry requirements.

● Multi-party decentralization with tamperproofing of all data, regardless of size, type,
or ownership that allows for sharing anti-laundering information with regulators,
central banks, and federal authorities.

Notably, what is not present is anything related to infrastructure: servers, Kubernetes
management, database deployments, etc. It is truly lean – the vast majority of what goes into
a typical application is gone. Even though this lean application can do many things that even
the best and brightest hand-written “conventional” applications can not do today, including
cross-cloud, cross-region, cross-party data sharing with ACID guarantees through APIs that
are guaranteed to evolve in a secure and backward-compatible fashion over time.

Of course, this example is not fully reflective of all the real-world needs of an application. In
practice, it might need a transformation between an existing web app (“front end”) and the
generated GraphQL APIs, custom workflows to look for unusual balances or activity that
run overnight as batch processes, additional event handlers to hook up other legacy
systems and applications, and so forth.

But the central idea, that much of the manual labor of replicating data and crafting “data APIs”
can be removed and replaced with smarter infrastructure solutions, remains. Figure 4
illustrates the architecture of our lean banking app.

Adoption Concerns
Lean apps offer significant benefits over traditional application design approaches. But like
any significant change, care is required to avoid pitfalls.

Common concerns include:
● “Training wheels” that won’t scale with production usage. A persistent problem,

especially with purely “client-side” tools and frameworks is that they are ultimately
just training wheels; once a practitioner becomes fluent in the underlying system or
platform, the need for the assistance diminishes.
Low-code solutions, especially front end ones, also tend to have growing pains: by
limiting what is easy to express, they can also limit what is possible to accomplish.
By contrast, lean apps are implemented in the same way as robust,
production-grade public cloud services: they offer scalability through multi-tenancy
and tend to show off some of their best ROI as applications scale up in both usage
and complexity. And the ability of lean apps to offer consistent solutions to some of
the most pressing problems (cross-cloud data sharing, decentralized single source
of truth with partners, etc.) means that many companies and developers may
actually need some time to “grow into” their full range of capabilities.

● Containers and Kubernetes. Kubernetes is a powerful, but unfortunately, also very
complex, technology. It is also structurally disposed towards the lowest common
denominator of the public cloud, which tends to deflate the value that businesses
can get from public cloud adoption.

Lean apps offer a different thesis: that best-of-breed public cloud services are
important to leverage, but companies (and developers) need help connecting them
to their data (and other systems) and retaining the ability to change those decisions
over time. However, it is also important to realize that containers are not the
opposite of lean apps – in fact, they are one of the best ways to express many of the
lean app business logic mechanisms, such as integrity constraints and workflows.
And even if a developer has an existing solution that cannot be ported away from a
Kubernetes or server-based implementation initially, there are two ways to retain it:
by treating it as a microservice that connects to lean apps, or by using it as the
stateful workflow engine within a lean app. The latter approach typically limits some
of the serverless benefits, cost improvements, and scalability of the lean app, but
may still provide a useful incremental step to acquire the many other benefits that a
lean app provides.

● Cost. Understandably, cost is a dominant concern any time IT vendors are being
considered or new approaches are being introduced. Lean apps offer significant
cost savings over traditional approaches because they are built on serverless
principles, meaning they “scale down to zero.” hen no work is being performed, they
cost nothing to operate. That tight cost enveloping means that teams do not need
to scale to peak capacity, as is usually required for server- or container-based
solutions. Lean apps also shift critical but difficult cost optimizations, such as
cross-cloud and cross-region data routing, data storage lifecycle management, and
large object storage transmission and replication, to the platform, allowing them to
be optimized with best-of-breed solutions instead of by an already strapped
developer just focused on delivering the basics for a time-sensitive project.

● Lock-in. One of the most critical aspects of lean apps is that they diminish reliance on
a single public cloud provider: by virtue of being able to add new partners, regions,
and cloud nodes with just a couple lines of configuration, vendors like Vendia, who
specialize in lean app methodologies, help customers break geographic and cloud
service provider dependencies with every app they build or port. And since lean
apps focus on standards-based artifacts (container images, JSON/JSON Schema,
GraphQL, HTTP) they keep developers from having to learn proprietary languages,
file formats, or approaches.

Are Lean Apps a New Idea?
Of course not – like most changes, the concept of lean apps is just an evolution of what is
come before, weaving established trend lines together and giving a name and strategic
direction to inevitable processes that are nascent today, but growing fast.

“Serverless” cloud services, for instance, captured some of the essential ideas of Lan Apps,
but missed out on the idea that the data model is essential to truly simplifying application
development.

Cloud-based data lake companies like Snowflake made the leap of treating cross-cloud as a
feature, rather than a porting exercise left to the reader, a la Kubernetes, but remain
focused on specific analytics and BI-based solutions rather than the more general problem
of application construction. Cloud-based databases, such as Google’s Spanner, have started
down the road of supporting cross-region solutions, but have yet to fully embrace the idea
of cross-account (let alone cross-cloud or cross-party) data as a built-in feature.

Blockchains, such as Hyperledger Fabric and Ethereum, embody the idea of distributed
data models that can span companies, clouds, and technology stacks, but are missing the
scalability, performance, fault tolerance, cloud integration, and application code support
that would be necessary to host typical IT business solutions, especially those with serious
privacy, compliance, and scalability requirements. Open source software achieves “zero
marginal cost” sharing, but is not a solution for delivering SaaS-style operations without
manually hosting, scaling, and managing it all.

By bringing all these elements together, companies like Vendia make lean apps possible –
offering an application framework that enables developers to express, deploy, and operate
a lean app today.

The Lean App Movement

The Lean App Goal: Flip the IT Iceberg
Every company talks about innovating to serve customers. Every developer wants to spend
their time on the activities and outcomes that matter (the tip of the iceberg), not pointless,
repetitive drudgery (the much larger underwater portion). And yet, modern application
development across every country and industry sector is dominated by undifferentiated
activities.

What would it take to “flip the iceberg” – to get to a place where 90% or more of a team’s
time, energy, and infrastructure spend goes towards innovation and competitive
differentiation, and less than 10% is spent on babysitting infrastructure, repetitive
development and deployment tasks, and other undifferentiated heavy lifting?

Key to this company and team transformation is an associated application transformation:
moving from a style of application development that depends on a broad, expensive
surface area to one where the surface area is as minimal as possible – with more
work and more complexity shifted to infrastructure vendors.

A Lean App Manifesto
What does that world look like? In some ways, it is a continuation of everything that’s come
before: open source software, the public cloud, Serverless. Each of these helped to “lean
out” some aspect of application development, without getting quite all the way there.

http://www.vendia.net

The lean app movement is driven by a simple, overarching idea: Less over more.

If a technology, process, approach, or vendor can do something
effectively that is not an organization’s core business, then let them.
Outsourcing work is a blessing, and helps avoid Tyranny of Choice
mistakes that are unfortunately common among developers who
mistake “more control” for “better outcomes over time”. Code,
infrastructure, and tools are costly, long-term liabilities – remove what
you can, standardize what remains.

Specifically for applications, lean apps follow 6 simple rules:

1. Differentiated business logic over undifferentiated
commodity code and activities. If it is not unique to a
company, or does not matter to the end users, why spend the company’s time,
money, and people to do it?

2. Smart APIs over “dumb pipes”. If an application has to poll repeatedly for data or
expend code (and developer effort) dealing with missing, out-of-date, or
inconsistent information, then it is a dumb API problem. Smart APIs enable teams to
concentrate on application concerns, not the details of how data is secured,
replicated, shipped across clouds, or made ACID.

3. Schemas over code. If there is an easy, standards-based way to express something
about data model or its integrity constraints (initially or over time), use that, in
preference to writing (and maintaining) expensive, custom code to do the same
thing.

4. Automation over manual effort. API generation, schema evolution, transactional
data replication, event generation…virtually every application development team
struggles to recreate these elements, and yet none of them are differentiated
(“business logic”) outcomes.

5. Off-the-shelf data sharing and data security over costly “DIY” data and security
coding. If your application is reinventing the wheel by trying to solve cross-company,
cross-cloud, cross-region, or cross-account data sharing (with a focus on security,

scalability, cost management, fault tolerance, and compliant data access controls),
then something is wrong.
DIYing any of these data sharing solutions is the poster child of undifferentiated heavy
lifting. Lean apps embrace consistent, platform-provided security, compliance, and
governance, rather than leaving these as application-specific coding requirements to
be performed over and over again with every new project.

6. SaaS over IaaS; serverless over serverful. Deploying or operating another
company’s software? Manually scaling systems up and down that should be “adult
enough” not to require you to babysit them? Are not AWS/Azure/GCP yet spending
time and money to keep servers or other infrastructure healthy? If end users do not
benefit directly from an activity, perhaps time is better spent innovating elsewhere.

Figure 5: The six pillars of lean.

Getting Started
Is it possible to create lean apps today? What about “brown field” applications that can not
be discarded and recreated overnight … can they benefit from lean ideas or incremental
migration strategies?

Like any significant movement, change takes time: despite the transformative effect of the
public cloud, the majority of business applications still run on-prem. In fact, only in 2020 did
cloud spend outstrip on-premise IT spending for the first time in history. For many

https://www.infoworld.com/article/3612769/cloud-spending-outstrips-on-premises-investments-for-the-first-time.html
https://www.infoworld.com/article/3612769/cloud-spending-outstrips-on-premises-investments-for-the-first-time.html

companies, a quarter century or more of mainframe and on-prem hardware and software
investments mean that they still have a long way to go to fully adopt the cloud.

Serverless solutions – such as AWS’s Lambda and Fargate – while representing some of the
fastest growing elements of that cloud provider’s portfolio, still represent only a fraction of
total compute spend on the AWS platform. Lean apps will follow similar lines, if for no
reason other than the fact that they also benefit from public cloud adoption and further
development of serverless offerings.

Working on a green field application or feature? Companies like Vendia will let you move
directly to a lean app methodology for new application development or to layer a
significant new feature or capability on top of an existing application. And where wholesale
adoption of the idea is not (yet) possible, developers and companies still benefit from the
concept through incremental steps in various areas of application development:

APIs
● Adopting schema-based solutions for APIs (such as the Open API specification,

formerly known as “Swagger”) and data.
● Prefer GraphQL over REST APIs when possible, to future-proof both client and

server interfaces. This also enables adopting a lean app-style schema evolution
approach, even if the schema evolution needs to be “manual” for now rather than
automatically computed and applied.

Data Storage
● Adopting cloud-based databases, especially “serverless” offerings, such as Amazon

Aurora Serverless, Amazon DynamoDB (with the serverless scaling/pricing option
enabled) or Google Spanner.

● Utilize built-in data capabilities from cloud service providers where possible, such as
automated backup solutions or cross-region data replication (but realize read
consistency models typically degrade when using the latter).

Application Design
● Segregating integrity constraints and workflow code from “infrastructure

management” code, making it easier to migrate off the latter over time.

http://www.vendia.net/developers
https://swagger.io/specification/

● Adopting fully managed cloud-based services where possible for data storage, event
hubs, queuing, API management, etc. This will make it easier to adopt a lean
application framework over time.

● Prefer serverless options over “serverful” ones where complex application state or
data manipulation is not required.

● Prefer standardized server (machine) or container images where possible over
custom solutions.

Final Thoughts
The concept of “leanness” has been around for ages – in a sense, it’s just DRY coding
applied at a macroscopic level to every aspect of an application, from data handling to
cross-cloud deployment.

But as the next major iteration of software development, it will once again transform the
industry much as the cloud has, shifting ever more work from individual developers, their
applications, and the companies that pay their wages, onto cloud and other providers who
will create economies of scale through multi-tenanted solutions that handle the
undifferentiated (if still exceeding complex) heavy lifting of data and compute
management. Over time, companies will enjoy lower TCO, faster time to market, and better
ROI as the process of developing, deploying, and maintaining software applications and
associated IT infrastructure continues to drop.

Lean coding is the ultimate expression of innovating for customers.

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself#:~:text=%22Don't%20repeat%20yourself%22,data%20normalization%20to%20avoid%20redundancy.

About the Author
Dr. Tim Wagner, the “Father of Serverless,” is the inventor and leader
responsible for bringing AWS Lambda to market. He has also been
an operational leader for the largest US-regulated fleet of
distributed ledgers while VP at Coinbase, where he oversaw billions
in real-time transactions. Dr. Wagner co-founded Vendia with
Shruthi Rao in 2020 and serves as its CEO and Chief Product
Visionary. Vendia’s mission – to help organizations of all sizes easily

share data and build applications that span companies, clouds, and geographies – is his
passion, and he speaks and publishes frequently on topics ranging from serverless to
distributed ledgers.

linkedin.com/in/timawagner
t: @timallenwagner
www.vendia.com/blog

http://www.linkedin.com/timawagner
http://www.vendia.com/blog

